If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-11t-22=0
a = 2; b = -11; c = -22;
Δ = b2-4ac
Δ = -112-4·2·(-22)
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-3\sqrt{33}}{2*2}=\frac{11-3\sqrt{33}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+3\sqrt{33}}{2*2}=\frac{11+3\sqrt{33}}{4} $
| 8+4x=5(x-4)+23 | | 2x+50=140+122 | | 4x+8+6=2x+4+9 | | -10x=15-5x | | 4(x+2x)+12=2(2-3x)+14x | | 2n/5=18 | | 2*(9x+10)=92 | | 3(5x+4)-10x-23+14=18x+10 | | 12.1=3w+8-0.5w | | x-27=18+27 | | (35x+27-15x)-(18x-30)=14x-(20+5x) | | 2(1-4r)=2(r+3)-4 | | 6-7x+4x^2=0 | | 1(12+x)=−8(6−x)3 | | 11/16=x/256 | | h=1¡ | | 10x+4x=16 | | (16+6x)÷2=4x | | 2x^2+8=x^2+33 | | 20=-7u+3(u-4) | | x/2=3.4/7 | | 1x+11=2x+4 | | 9b-5=3b-0.8 | | y+12=2y-6.3 | | 10t–5=60 | | √(9x+4)=3√(x+4) | | 331s+6=7 | | 5x^2•125=25^2x | | 3d+16=-2(5-3d | | 0.5*30*x^2+0.5*0.5*(0.29/2)^2=0.5*30*0.038^2 | | a^-4=625 | | (a+4/3)-(a/7)=a+7/5 |